

Year 11 Mathematics Specialist Units 1&2 Test 6 2022

Calculator Free **Proof & Complex Numbers**

STUDENT'S NAME

DATE: Friday 14th October

TIME: 45 minutes

MARKS: 48

INSTRUCTIONS: Standard Items:

Pens, pencils, drawing templates, eraser, approved Formula sheet

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

Questions begin on the next page.

1. (7 marks)

Given w = 3 - 5i and z = i - 2, evaluate the following:

- (a) 2w + z [1]
- (b) *wz* [2]

(c) \overline{WZ}

(d) $\frac{w}{z}$

[3]

[1]

2. (3 marks)

Determine the complex number w if w + iw = 1 + 7i.

3. (3 marks)

Express $0.03\overline{4}$ as a rational number.

4. (6 marks)

Prove, by contradiction, $\sqrt{7}$ is irrational.

5. (4 marks)

Determine all exact solutions (real and complex) for the equation $x^3 - 4x^2 + 13x = 0$

6. (6 marks)

Prove by mathematical induction, $a + ar + ar^2 + \ldots + ar^{n-1} = \frac{a(1-r^n)}{1-r}$, $r \neq 1$.

7. (6 marks)

Consider the expression $m^2 + 7$

(a) Evaluate the expression $m^2 + 7$ for m = 1, 3, 5, 7 and 9 [1]

(b) Use your values from (a) to state the largest integer, p, that $m^2 + 7$ is always divisible by, when m is a positive odd integer. [1]

(c) Prove that $m^2 + 7$ is always divisible by p when m is a positive odd integer. [4]

8. (13 marks)

(a) Given that $p^n = -i$, where $n \in \mathbb{Z}$, determine each of the following:

(i)
$$p^{n+1}$$
 [2]

(ii)
$$(p^n - p^{-n})^2$$
 [3]

(b) Two complex numbers w and z are such that their addition and subtraction are shown on the diagram below.

Add and label each of the following to the grid above.

(i)
$$zi + wi$$
 [2]

(ii)
$$\frac{z-w}{i}$$
 [2]

(iv)	W	[2]
(iv)	W	[2

Additional Working Space:

Additional Working Space: